Filsafat Kontruktivis dan Pembelajaran Kontekstual
Pada bagian ini akan diuraikan beberapa pendekatan baru dalam pembelajaran matematika yang relevan dengan paradigma baru pendidikan sebagaimana dijelaskan di atas. Pedekatan terebut adalah: konstruktivis dan pembelajaran kontekstual (contextual teaching and learning).
Konstruktivis
Menurut faham konstruktivis pengetahuan merupakan konstruksi (bentukan) dari orang yang mengenal sesuatu (skemata). Pengetahuan tidak bisa ditransfer dari guru kepada orang lain, karena setiap orang mempunyai skema sendiri tentang apa yang diketahuinya. Pembentukan pengetahuan merupakan proses kognitif di mana terjadi proses asimilasi dan akomodasi untuk mencapai suatu keseimbangan sehingga terbentuk suatu skema (jamak: skemata) yang baru. Seseorang yang belajar itu berarti membentuk pengertian atau pengetahuan secara aktif dan terus-menerus (Suparno, 1997).
Prinsip-prinsip kontruktivisme banyak digunakan dalam pembelajaran sains dan matematika. Prinsip-prinsip yang diambil adalah (1) pengetahuan dibangun oleh siswa sendiri, baik secara personal maupun sosial, (2) pengetahuan tidak dapat dipindahkan dari guru ke siswa, kecuali hanya dengan keaktifan siswa sendiri untuk menalar, (3) murid aktif mengkonstruksi terus-menerus, sehingga selalu terjadi perubahan konsep menuju konsep yang lebih rinci, lengkap, serta sesuai dengan konsep ilmiah, (4) guru sekadar membantu penyediakan sarana dan situasi agar proses konstruksi siswa berjalan mulus (Suparno, 1997).
Menurut filsafat konstruktivis berpikir yang baik adalah lebih penting daripada mempunyai jawaban yang benar atas suatu persoalan yang dipelajari. Seseorang yang mempunyai cara berpikir yang baik, dalam arti bahwa cara berpikirnya dapat digunakan untuk menghadapi fenomen baru, akan dapat menemukan pemecahan dalam menghadapi persoalan lain (Suparno, 1997).
Seringkali diungkapkan bahwa menurut paradigma baru pendidikan peran guru harus diubah, yaitu tidak sekedar menyampaikan materi pelajaran kepada para siswanya, tetapi harus mampu menjadi mediator dan fasilitator. Fungsi mediator dan fasilitator dapat dijabarkan dalam beberapa tugas sebagai berikut.
1. Menyediakan pengalaman belajar yang memeungkinkan siswa bertanggung jawab dalam membuat rancangan, proses, dan penelitian. Karena itu memberi ceramah bukanlah tugas utama seorang guru.
2. Menyediakan atau memberikan kegiatan-kegiatan yang merangsang keingintahuan siswa dan membantu mereka untuk mengekspresikan gagasan-gagasannya dan mengkomunikasikan ide ilmiah mereka (Watt & Pope, 1989). Menyediakan sarana yang merangsang siswa berpikir secara produktif. Menyediakan kesempatan dan pengalaman yang paling mendukung proses belajar siswa. Guru harus menyemangati siswa. Guru perlu menyediakan pengalaman konflik (Tobin, Tippins, & Gallard, 1994).
3. Memonitor, mengevaluasi, dan menunjukkan apakah pemikiran si siswa jalan atau tidak. Guru menunjukkan dan mempertanyakan apakah pengetahuan siswa itu berlaku untuk menghadapi persoalan baru yang berkaitan. Guru membantu mengevaluasi hipotesis dan kesimpulan siswa. (Suparno, 1997).
Agar peran dan tugas tersebut berjalan dengan optimal, diperlukan beberapa kegiatan yang perlu dikerjakan dan juga beberapa pemikiran yang perlu disadari oleh pengajar.
1. Guru perlu banyak berinteraksi dengan siswa untuk lebih mengerti apa yang sudah mereka ketahui dan pikirkan.
2. Tujuan dan apa yang akan dibuat di kelas sebaiknya dibicarakan bersama sehingga siswa sungguh terlibat.
3. Guru perlu mengerti pengalaman belajar mana yang lebih sesuai dengan kebutuhan siswa. Ini dapat dilakukan dengan berpartisipasi sebagai pelajar juga di tengah pelajar.
4. Diperlukan keterlibatan dengan siswa yang sedang berjuang dan kepercayaan terhadap siswa bahwa mereka dapat belajar.
5. Guru perlu mempunyai pemikiran yang fleksibel untuk dapat mengerti dan menghargai pemikiran siswa, karena kadang siswa berpikir berdasarkan pengandaian yang tidak diterima guru. (Suparno, 1997).
Pembelajaran Kontekstual
Pembelajaran kontekstual berangkat dari suatu kenyakinan bahwa seseorang tertarik untuk belajar apabila ia melihat makna dari apa yang dipelajarinya. Orang akan melihat makna dari apa dipelajarinya apabila ia dapat menghubungkan informasi yang diterima dengan pengetahuan dan pengelamannya terdahulu. Sistem pembelajaran kontekstual didasarkan pada anggapan bahwa makna memancar dari hubungan antara isi dan konteksnya. Konteks memberi makna pada isi. Lebih luas konteks, dalam mana siswa dapat membuat hubungan-hubungan, lebih banyak makna isi ditangkap oleh siswa. Bagian terbesar tugas guru, dengan demikian, adalah menyediakan konteks. Apabila siswa dapat semakin banyak menghubungkan pelajaran sekolah dengan konteks ini, maka lebih banyak makna yang akan mereka peroleh dari pelajaran-pelajaran tersebut. Menemukan makna dalam pengetahuan dan ketrampilan membawa pada penguasaan pengetahuan dan ketrampilan tersebut (Johnson, 2002).
Ketika siswa menemukan makna dari pelajaran di sekolah, mereka akan memahami dan mengingat apa yang telah mereka pelajari. Pembelajaran konteksual memungkina siswa mampu menghubungkan pelajaran di sekolah dengan konteks nyata dalam kehidupan sehari-hari sehingga mengetahui makna apa yang dipelajari. Pembelajaran kontekstual memperluas konteks pribadi mereka, sehingga dengan menyediakan pengalaman-pengalaman baru bagi para siswa akan memacu otak mereka untuk membuat hubungan-hubungan yang baru, dan sebagai konsekuensinya, para siswa dapat menemukan makna yang baru (Johnson, 2002).
Pembelajaran kontekstual merupakan sistem yang holistik (menyeluruh). Ia terdiri dari bagian-bagian yang saling berkaitan, yang apabila dipadukan akan menghasilkan efek yang melebihi apa yang dapat dihasilkan oleh suatu bagian secara sendiri (tunggal). Persis seperti biola, celo, klarinet dan alat musik yang lain dalam suatu orkestra yang mempunyai suara yang berbeda, tetapi secara bersama-sama alat-alat musik tersebut menghasilkan musik. Jadi, bagian-bagian yang terpisah dari CTL melibatkan proses yang berbeda, apabila digunakan secara bersama-sama, memungkinkan siswa membuat hubungan untuk menemukan makna. Setiap elemen yang berbeda dalam sistem CTL memberikan kontribusi untuk membantu siswa memahami makna pelajaran atau tugas-tuga sekolah. Digabungkan, elemen-elemen tersebut membentuk suatu siswa yang memungkinkan siswa melihat makna dari pelajaran sekolah, dan menyimpannya (Johnson, 2002).
Dari uraian di atas, CTL didefinisikan sebagai suatu proses pendidikan yang bertujuan membantu siswa melihat makna dari pelajaran sekolah yang sedang mereka pelajari dengan menghubungkan pelajaran tersebut dengan konteksnya dalam kehidupan sehari-hari, baik secara pribadi, sosial, maupun budaya. Untuk mencapai tujuan itu, sistem tersebut meliputi delapan komponen: (1) membuat hubungan yang bermakna, (2) melakukan pekerjaan yang berarti, (3) pengaturan belajar sendiri, (4) kolaborasi, (5) berpikir kritis dan kreatif, (6) mendewasakan individu, (7) mencapai standar yang tinggi, dan (8) menggunakan penilaian autentik. (Johnson, 2002).
Pendidikan Matematika Realistik
Pendidikan Matematika Realistik (PMR) dikembangkan berdasarkan pemikiran Hans Freudenthal yang berpendapat bahwa matematika merupakan aktivitas insani (human activities) dan harus dikaitkan dengan realitas. Berdasarkan pemikiran tersebut, PMR mempunyai ciri antara lain, bahwa dalam proses pembelajaran siswa harus diberikan kesempatan untuk menemukan kembali (to reinvent) matematika melalui bimbingan guru (Gravemeijer, 1994), dan bahwa penemuan kembali (reinvention) ide dan konsep matematika tersebut harus dimulai dari penjelajahan berbagai situasi dan persoalan “dunia riil” (de Lange, 1995).
Dunia riil adalah segala sesuatu di luar matematika. Ia bisa berupa mata pelajaran lain selain matematika, atau bidang ilmu yang berbeda dengan matematika, ataupun kehidupan sehari-hari dan lingkungan sekitar kita (Blum & Niss, 1989). Dunia riil diperlukan untuk mengembangkan situasi kontekstual dalam menyusun materi kurikulum. Materi kurikulum yang berisi rangkaian soal-soal kontekstual akan membantu proses pembelajaran yang bermakna bagi siswa. Dalam PMR, proses belajar mempunyai peranan penting. Rute belajar (learning route) di mana siswa mampu menemukan sendiri konsep dan ide matematika, harus dipetakan (Gravemeijer, 1997). Sebagai konsekuensinya, guru harus mampu mengembangkan pengajaran yang interaktif dan memberikan kesempatan kepada siswa untuk memberikan kontribusi terhadap proses belajar mereka.
Pada saat ini, PMR mendapat perhatian dari berbagai pihak, seperti guru, siswa, orangtua, dosen LPTK (teacher educators), dan pemerintah. Beberapa sekolah dasar di Yogyakarta, Bandung dan Surabaya telah melakukan ujicoba dan implementasi PMR dalam skala terbatas. Sebelum PMR diimplementasikan secara luas di Indonesia, perlu pemahaman yang memadai tentang teori ‘baru’ tersebut. Seringkali kegagalan dalam inovasi pendidikan bukan disebabkan karena inovasi itu jelek, tapi karena kita tidak memahaminya secara benar. Makalah ini akan menguraikan secara garis besar tentang sejarah PMR, mengapa kita perlu mengembangkan PMR di Indonesia, bukti empiris prospek penerapan PMR di Indonesia, dan ditutup dengan harapan terhadap implementasi PMR di tanah air. Sejarah PMR
PMR tidak dapat dipisahkan dari Institut Freudenthal. Institut ini didirikan pada tahun 1971, berada di bawah Utrecht University, Belanda. Nama institut diambil dari nama pendirinya, yaitu Profesor Hans Freudenthal (1905 – 1990), seorang penulis, pendidik, dan matematikawan berkebangsaan Jerman/Belanda.
Sejak tahun 1971, Institut Freudenthal mengembangkan suatu pendekatan teoritis terhadap pembelajaran matematika yang dikenal dengan RME (Realistic Mathematics Education). RME menggabungkan pandangan tentang apa itu matematika, bagaimana siswa belajar matematika, dan bagaimana matematika harus diajarkan. Freudenthal berkeyakinan bahwa siswa tidak boleh dipandang sebagai passive receivers of ready-made mathematics (penerima pasif matematika yang sudah jadi). Menurutnya pendidikan harus mengarahkan siswa kepada penggunaan berbagai situasi dan kesempatan untuk menemukan kembali matematika dengan cara mereka sendiri. Banyak soal yang dapat diangkat dari berbagai situasi (konteks), yang dirasakan bermakna sehingga menjadi sumber belajar. Konsep matematika muncul dari proses matematisasi, yaitu dimulai dari penyelesaian yang berkait dengan konteks (context-link solution), siswa secara perlahan mengembangkan alat dan pemahaman matematik ke tingkat yang lebih formal. Model-model yang muncul dari aktivitas matematik siswa dapat mendorong terjadinya interaksi di kelas, sehingga mengarah pada level berpikir matematik yang lebih tinggi.
Mengapa kita perlu mengembangkan PMR?
Orientasi pendidikan kita mempunyai ciri: cenderung memperlakukan peserta didik berstatus sebagai obyek; guru berfungsi sebagai pemegang otoritas tertinggi keilmuan dan indoktriner; materi bersifat subject-oriented; dan manajemen bersifat sentralistis (Zamroni, 2000). Orientasi pendidikan yang demikian menyebabkan praktik pendidikan kita mengisolir diri dari kehidupan riil yang ada di luar sekolah, kurang relevan antara apa yang diajarkan dengan kebutuhan pekerjaan, terlalu terkonsentrasi pada pengembangan intelektual yang tidak sejalan dengan pengembangan individu sebagai satu kesatuan yang utuh dan berkepribadian (Zamroni, 2000).
Paradigma baru pendidikan menekankan bahwa proses pendidikan formal sistem persekolahan harus memiliki ciri-ciri sebagai berikut (Zamroni, 2000):
1) Pendidikan lebih menekankan pada proses pembelajaran (learning) daripada mengajar (teaching);
2) Pendidikan diorganisir dalam suatu struktur yang fleksibel;
3) Pendidikan memperlakukan peserta didik sebagai individu yang memiliki karakteristik khusus dan mandiri; dan
4) Pendidikan merupakan proses yang berkesinambungan dan senantiasa berinteraksi dengan lingkungan.
Teori PMR sejalan dengan teori belajar yang berkembang saat ini, seperti konstruktivisme dan pembelajaran kontekstual (cotextual teaching and learning, disingkat CTL) . Namun, baik pendekatan konstruktivis maupun CTL mewakili teori belajar secara umum, PMR adalah suatu teori pembelajaran yang dikembangkan khusus untuk matematika. Selanjutnya juga diakui bahwa konsep PMR sejalan dengan kebutuhan untuk memperbaiki pendidikan matematika di Indonesia yang didominasi oleh persoalan bagaimana meningkatkan pemahaman siswa tentang matematika dan mengembangkan daya nalar. Salah satu pertimbangan mengapa Kurikulum 1994 direvisi adalah banyaknya kritik yang mengatakan bahwa materi pelajaran matematika tidak relevan dan tidak bermakna (Kurikulum 1994 Akhirnya Disempurnakan, 1999).
Beberapa konsepsi PMR tentang siswa, guru dan tentang pengajaran yang diuraikan berikut ini mempertegas bahwa PMR sejalan dengan paradigma baru pendidikan, sehingga ia pantas untuk dikembangkan di Indonesia.
Tidak ada komentar:
Komentar baru tidak diizinkan.